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1 Overview

APPS implements an asynchronous and fault tolerant parallel pattern search
method for optimization; see [5] for details of the original APPS algorithm.
Pattern search uses only function values for optimization, so it can be applied to
a wide variety of problems. The name pattern search derives from the fact that a
pattern of search directions is used to drive the search. Parallelism is achieved by
dividing the search directions (and corresponding function evaluations) among
the different processors. The asynchronous part comes about as a consequence
of the fact that, unlike parallel pattern search, no synchronization of the searches
along each direction is required.

APPS runs a collection of agents to manage the searches. This differs some-
what from the original APPS algorithm described in [5] because there may be
more than one search direction assigned to each agent. APPS may be run in
multi- or single-agent mode. Multi-agent mode insures a high level of fault
tolerance, and, in that case, one agent is assigned to each host. Single-agent
mode means that every search direction is assigned to one agent. The choice of
whether to use multi- or single-agent mode depends on the communication and
hardware architecture, as well as on user preference. By default, APPS uses
PVM as its communication architecture; however, the user may also specify
MPT or a custom communication interface. Multi-agent mode is only available
with PVM. Further details of the PVM and MPI implementations are discussed
in §§2-3.

The basic semantics of using APPS are described in §4, and a full list of
options is given in Appendix A. The output APPS generates is described in §5.
Details on using APPS with a user-supplied function evaluation are given in §6.

Pattern search may revisit a single point multiple times. To avoid reeval-
uating the objective function at these types of points, APPS saves the results
of every function evaluation in a cache. The cache is described in more detail
in §7.



2 PVM Implementation

The default communication architecture for APPS is PVM [2], although an
MPI [8] version (as described in the next section) is also supported and may
be better suited to some environments. The primary advantage of APPS-PVM
over APPS-MPI is support of fault tolerance.

In multi-agent mode, APPS-PVM runs one agent per host, and each agent
is in charge of a subset of the search directions. Consider the following set of
search directions:
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The core pattern is a set of search directions that satisfies the necessary conver-
gence properties for pattern search; for example, we require that the core pattern
contain a positive basis in the case of unconstrained optimization or that it con-
tain the positive and negative unit vectors in the case of bound constrained
optimization. The extra search directions are not necessary for convergence but
may accelerate the convergence process.

Figure 1 illustrates the distribution of the search directions to agents on
three hosts. The distribution is governed by the load or speed of each host, that
is, the ideal number of function evaluations per host. (The speed is specified in
the PVM hostfile; if it is not specified, then the speed is assumed to be 1.) In
this case, we assume that the speed of each host is 2. The goal of the initial
distribution (or any redistribution) is threefold: First, each search direction in
the core pattern must be assigned, even if that requires violating the ideal load
of the hosts. Second, extra search directions are assigned to agents until each
host has its ideal load. Third, if a search direction is already assigned to an
agent, it should not be moved to a new agent unless it is necessary to maintain
balance. Here, Hosts 0 and 1 each have two search directions and Host 2 has
one. No agent has more that its ideal load of two.

Each agent each spawn function evaluations (“Feval” in the figure above)
on its own hosts. Each function evaluation communicates only with its parent
agent, and the agents communicate among themselves as well as with their
children function evaluations. The communication channels are illustrated by
connections between the processes.

Each time a function evaluation is required, the agent spawns a function
evaluation process and sends a message to that process containing the point,
z, to be evaluated. The function evaluation process evaluates f at the point z,
sends a message containing f(z) to the parent agent, and exits. In the event
that a function evaluation fails to complete successfully, the value of f(x) is
assumed to be +o0.

In the event that an agent fails, the search directions are redistributed.
Consider Figure 1 again and suppose that Host 1 fails. In that case, we need to
redistribute the search directions. The [0, —1]7 direction is reassigned to Host 2,
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Figure 1: APPS-PVM with five search directions on three hosts.
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Figure 2: APPS-PVM with a failed host.
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Figure 3: APPS-PVM with a restarted host.

but the [—1, —1]T direction is not reassigned because then either Host 0 or Host 2
would have more than their ideal load of 2; see Figure 2. The (re)distribution of
the search directions is handled by the lowest numbered agent that is still alive
(Host 0 in this case).

In the event that a host is added or restarted, a new agent is started on that
host. For example, if Host 1 were restarted, a new agent would be assigned to it,
and the agent would be assigned some search directions if any are available; see
Figure 3. In this example, we can assign the extra search direction [—1,—1]7
to the new agent without violating the ideal load constraints. Note that the
agent number of 1 is not reused; agents are numbered consecutively as they are
created.



APPS-PVM can also run in single-agent mode. In single-agent mode, one
agent controls all the search directions and spawns function evaluations on all
hosts. If that agent fails there is no way to restart it, so single-agent mode is not
fault-tolerant. The way APPS-PVM runs in single-agent mode is very similar
to the way APPS-MPI runs.

3 MPI Implementation

The MPI [8] version of APPS is quite different from the PVM version. Since
the MPI-2 standard [6] does not provide some necessary functions for fault-
tolerance, such as detecting the failure of processes, APPS-MPI makes no at-
tempt at fault tolerance. It therefore runs only in single-agent mode.

The advantage of single-agent mode is that since one agent controls all the
search directions, every search direction knows immediately when a new best
point is found. The disadvantage is the lack of fault tolerance and the possibility
that the one agent will be overwhelmed by all the extra communication it has
to do as a result of being in charge of all the search directions. This has not,
however, been an issue in our experiments.

% - .
Worker 0 Worker 2 Worker 4

Host 0 Host 1 Host 2

Figure 4: APPS-MPI with five search directions on three hosts.

Unlike APPS-PVM, which spawns function evaluation processes as neces-
sary, all the processes that will be used for function evaluations by APPS-MPI
come into existence when APPS starts and run until APPS terminates. All the
processes start the same program. Process 0 branches to execute the code for an
agent. If the cache is being used, the last process branches to execute the code
for the cache; see §7. The other processes branch to the code for a worker; see
Figure 4. Each worker waits for a message from the agent to perform a function
evaluation. When it receives such a message, it evaluates the objective function
at the given point and returns the result to the agent.

The user should note that the distribution of processes across hosts is con-
trolled by MPI; Figure 4 represents just one possible distribution.

APPS-MPI uses two classes to manage and perform function evaluations.
Each worker owns an instance of FevalWkr (“function evaluation worker”).



There is only one instance of the other class, FevalMgr (“function evaluation
manager”), and it is owned by the agent. FevalMgr is the agent’s interface to
the workers. The agent calls methods on FevalMgr to start function evaluations
and to check for the results of finished function evaluations.

APPS-MPI compares favorably to APPS-PVM in terms of speed. Table 1
compares the speed of APPS-PVM in single- and multi-agent mode to APPS-
MPT using two freely available implementations of MPI, LAM [7] and MPICH 3,
4]. (For information on obtaining LAM or MPICH, see Appendix D.) We ran
a four-dimensional test problem (broyden2a of Example 3) with eight search
directions 25 times for each APPS configuration and averaged the timings. We
did the same for 16, 24, and 32 search directions. For these tests we used a
convergence tolerance of 103, the default “stall factor” of 100, no cache, and
no bounds. The tests were run on a cluster of DEC Alpha Miata 433 MHz
processors. Because of the way the runs were timed, timings for MPI do not
include the time needed to start all the processes before the program begins
running (usually about one second). Timings for PVM do reflect the time
needed to spawn all processes, since the spawning takes place after APPS-PVM
has started.

Search LAM | MPICH | PVM | PVM
Directions Single | Multi
8 3.60 3.61 11.12 17.43
16 1.21 2.84 15.22 12.88
24 0.41 2.48 15.45 11.95
32 0.61 2.27 8.80 | 11.96

Table 1: Time (in seconds) to solve a four-dimensional test problem (averaged
over 25 runs) for APPSPACK version 1.5. (Version 2.0 of APPSPACK is sig-
nificantly faster for PVM, and new results will be included in a future version
of this manual.)

4 Compilation and Usage

After downloading APPSPACK, unzipping it will create the directory appspack,
and the full path to this directory is hereafter referred to as $APPSPACK. The
directory structure inside $APPSPACK is shown in Figure 5

To compile, follow the directions in $APPSPACK/INSTALL.txt. In general,
the procedure is

>> cd $APPSPACK
>> ./configure
>> make

The default is to install the PVM version, and special options to configure
are required to enable MPI or simply disable PVM. Full details are given in



$APPSPACK Main directory

$APPSPACK/apps APPS application and makefile
$APPSPACK/apps/src APPS source files
$APPSPACK/apps/include APPS include files

$APPSPACK/bin MPI & other executables plus perl utilities
$APPSPACK/doc Documentation files

$APPSPACK/ex1 Source code and makefile for Example 1
$APPSPACK/ex2 Source code and makefile for Example 2
$APPSPACK/ex3 Source code and makefile for Example 3

Figure 5: APPSPACK Directory Structure

the installation instructions in INSTALL.txt. Whether using the PVM or MPI
version, you must insure that all executable files are copied to every host in the
computing platform. (The perl script $APPSPACK/bin/multicmd may be used
to accomplish the copying. Type multicmd -h for instructions.)

The basic usage statement is:

$APPS [$0OPTIONS] $PARAMS

where $APPS is the application name (which depends on the communication
architecture and the problem name), $0PTIONS refers to various APPS options
(such as the convergence tolerance) as described in Appendix A, and $PARAMS
refers to the function evaluation parameters, which depend upon the particular
function evaluation being used and are described later in this section.

The formula for constructing the APPS executable name is

$APPS = apps_$XCOM_$X

where $XCOM is the communication architecture and $X is the problem name.
For example, the generic PVM version version of APPS is named

apps_pvm_generic

The generic PVM version of APPS depends on a generic function evaluation
interface. If a special function interface is required (as illustrated for Example
3 in §6.3 below), then the name would be something like

apps_pvm_ex3

For MPI, every executable is customized since it must be linked with the function
evaluation at compilation. So, it would be named, e.g.,

apps-mpi_ex3
To run an MPI version, type

mpirun -np $N appsmpi_ex3 [$0PTIONS] $PARAMS
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where $N is the number of search directions plus two if APPS is run with the
function value cache (the default) or plus one if APPS is run without the cache
(see §7 for details about the cache).

For implementations that do not use PVM or MPI, “other” is the default
name of the communication architecture, although that may be customized. For
example, we have included a serial version of APPS for each example, and the
version for Example 3 is named:

apps_other_ex3

The location of the executables depends on the communication architecture.
The PVM programs are put in the directory

$HOME/pvm3/bin/$PVM_ARCH
while other executables are put in the directory
$APPSPACK/bin

The location of the executables may be modified by specifying —-bindir with

configure or modifying the file $APPSPACK/Makefile.defs after running configure.
The $PARAMS are the parameters for the function evaluation. For PVM, the

default parameters are $NAME, the executable name of the spawned function

evaluation program, and $NDIM, the problem dimension. For MPI there is only

one default parameter — $NDIM, the problem dimension. The parameters may

be changed by modifying the MyFevalMgr object, as described in §6. Type

$APPS --help

to list the function evaluation parameters.

5 Output

APPS’s output can give varying levels of information about what the algorithm
is doing. The level of output is controlled by APPS’s debug option. The default
is -—debug=2, which outputs initialization information for the first agent started,
each new minimum found, any agent failures detected by the first agent, and
the location of the best point found. The eleven debug levels are described in
Appendix A.

By default, APPS prints all output to standard I/O, but output can be
redirected to a file using the output option described in Appendix A.

Here we will describe APPS’s output. The output examples come from
running APPS-PVM with two agents on a two-dimensional problem (broyden2a
of Example 3; see §6.3). The command line used was:

>> apps_pvm_ex3 broyden2a 2
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Since APPS is a parallel application, output sometimes appears out of or-
der or jumbled. In general, APPS’s output will appear roughly in the order
described here, although small variations should be expected. The output from
the command above is shown in Figure 6. The line numbers are not part of
APPS’s output; they have been added for clarity. The text xx-> at the begin-
ning of each line, where xx is an agent number, indicates what agent that line
of output originated from.

5.1 Initialization Output

Lines 1-24 in Figure 6 show the initialization information.

Lines 1-3 show parameter choices; see debug, profile, and epsilon in
Appendix A.

Lines 4-6 show details about the agents. The agent that constructed the
agent information is Agent 0. The globally unique identifier (GUID) attached
to this agent information in specified by the tag of 000-004. Whenever the
agent information is refreshed (due to the addition or deletion of the host), a
new GUID is generated. The GUID can be used to determine the most up-to-
date agent information in case messages arrive out of order. Line 4 also lists the
number of agents and the name of the apps executable. Lines 5 & 6 list details
about each agent. Most importantly, isalive says whether the agent is still
functioning. In single agent mode, the details about each agent are not listed.

Lines 7-8 show the details of the mapping of search directions to agents.
Line 7 indicates that there are 4 search directions and that all 4 directions are
in the core pattern (i.e., active), search directions may be reassigned, there is
no model (this feature is under development), and the total number of jobs to
assign is 4. The actual job assignment is list in Line 8: Search Directions 0 and
2 are assigned to Agent 0 and Search Directions 1 and 3 are assigned to Agent
1.

Line 9 lists details about the cache manager process. The cache is described
in detail in §7. Here we see that the cache is being used usecache=1, the PVM
task id for the given, and a GUID is assigned to the information. Once again,
the GUID may be used to determine the most up-to-date information.

Line 10 will detail the model manager information when that functionality
is implemented.

Line 11 lists the parameters used in the line search; see Appendix A for
description of each item.

Line 12 lists information about the function evaluation. This differs for each
type of function evaluation. In this case, the name of the executable is listed,
the specific problem name, the dimension, and two other parameters (see §6.3).

Line 13 indicates that there are no bounds. If there were bounds, then that
line would be replaced by the following two lines:

00-> Bounds lower=[ -1.00e+00 0.00e+00 ]
00-> Bounds upper=[ 1.00e+00 2.00e+00 ]

12
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21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:

40:

41:
42:

00-> Global debug = 2

00-> Global profile = 2

00-> Point epsilon = 1e-08

00-> Agent myid=0 tag=000_004 nagents=2 name=apps_pvm_ex3
00-> Agent 0: isalive=1 hostid=40000 taskid=40023 speed=1

hostname=hopper

00-> Agent 1: isalive=1 hostid=80000 taskid=8006f speed=1

hostname=hypatia

00-> JobMap nsearch=4 nactive=4 reassign=1 ismodel=0 njob=4

00-> Job Assignment = [ 01 0 1 ]
00-> CachelMgr usecache=1 cachetid=80070 guid=000-005

00-> ModelMgr usemodel=0

00-> Step initstep=1 t0l=0.0001 theta=0.5 minstep=0.0002 maxstep=100000

alpha=0 inc=1 break=1

00-> FevalMgr name=ex3 probname=broyden2a ndim=2 usebounds=0 stall=1

00-> Bounds: None

00-> Bounds scale=[ 1.00e+00 1.00e+00 ]
00-> Pattern ndim=2 nsearch=4 type=0 rnormtol=1e-08
00-> Pattern column column O = [ 1.00e+00 0.00e+00 ]
00-> Pattern column column 1 = [ 0.00e+00 1.00e+00 ]
00-> Pattern column column 2 = [-1.00e+00 0.00e+00 ]

00-> Pattern column column 3
00-> INITIAL POINT f=<null> x=[-1.00e+00 -1.00e+00 ] step=1.00e+00

tag=000_003 conv=[ 0 0 O

01

00-> Search 0 Scaled Dir=[ 1.00e+00 0.00e+00 ]
01-> Search 1 Scaled Dir=[ 0.00e+00 1.00e+00 ]

01-> Search 3 Scaled Dir=[ 0.00e+00 -1.00e+00 ]

00-> Search 2 Scaled Dir=[-1.00e+00 0.00e+00 ]
00e+00 0.00e+00 ] step=1.00e+00

01-> Search 1 New Min f=
tag=001_006 conv=[ 0 0 0
00-> Search O New Min f=
tag=000-008 conv=[ 0 0 0
00-> Search 2 New Min f=
tag=000-014 conv=[ 0 0 0
00-> Search O New Min f=
tag=000-021 conv=[ 0 0 0
00-> Search 2 New Min f=
tag=000_028 conv=[ 0 0 O
00-> Search 0 New Min f=
tag=000_042 conv=[ 0 0 O
00-> Search 2 New Min f=
tag=000_051 conv=[ 0 0 O
00-> Search 0 New Min f=
tag=000_057 conv=[ 0 0 O

6.64e+01 x=[-1.

]

OO RO HO KO RKORKO Yo

T N N A

0e+00 x=[ 0.

3e+00 x=[-5.

.13e+00 x=[-2.

0e+00 x=[-3.

0e+00 x=[-3.

0e+00 x=[-3.

0e+00 x=[-3.

[ 0.00e+00 -1.00e+00 ]

00e+00 -1.00e+00 1]

00e-01

50e-01

75e-01

71e-01

72e-01

72e-01

.00e+00

.00e+00

.00e+00

.00e+00

.00e+00

.00e+00

]

]

step=1.
step=5.
step=2.
step=1.
step=3.
step=9.

step=4.

00e+00

00e-01

50e-01

25e-01

91e-03

77e-04

88e-04

00-> FINAL MINIMUM f= 1.00e+00 x=[-3.72e-01 -1.00e+00 ] step=4.88e-04

tag=000-057 conv=[ 1 1 1
00-> Search 2 Total time
Fail: O Break: 1 Flop:
00-> Search 0 Total time
Fail: O Break: 2 Flop:

00-> Cache Lookup Time Min:

11

8.04e-01 Idle time:
0 Cache: 7 Total:
8.04e-01 Idle time:
0 Cache: 6 Total:

00-> Agent 0 (hopper) exiting
01-> FINAL MINIMUM f= 1.00e+00 x=[-3.72e-01 -1.00e+00 ] step=4.88e-04

tag=000_057 conv=[ 1 1 1
01-> Search 3 Total time
Fail: O Break: 7 Flop:
01-> Search 1 Total time
Fail: O Break: 5 Flop:

01-> Cache Lookup Time Min:

11

5.10e-03 Max:

7.99e-01 Idle time:
0 Cache: O Total:
7.99e-01 Idle time:
0 Cache: O Total:

01-> Agent 1 (hypatia) exiting

5.33e-04 Max:

5.04e-01 Fevals:

22

4.70e-01 Fevals:

23
4,86e-02 Mean:

1.67e-

3.53e-01 Fevals:

39

3.72e-01 Fevals:

43
8.43e-03 Mean:

5.44e-

Figure 6: Sample APPSPACK initialization output.
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Line 14 shows the scaling information for the problem. The default scaling is
1.0, i.e., no scaling.

Lines 15-19 show the information of the search pattern. Line 15 gives details
about the pattern; see options pattern and rnormtol is Appendix A. The next
four lines list the search directions.

Line 20 lists the initial point — more details on this are given in the next
section. The £=<NULL> indicates that there is no function value assigned to this
point.

Lines 21-24 are the scaled search directions. Note that lines 21 and 23 come
from Agent 1, the owner of those directions.

5.2 Status Output

After the initialization information, APPS prints out information about the
progress of the algorithm. Lines 25-32 in Figure 6 show the status of the search.
At Debug Level 2, only new minimums (i.e., an improvement on the best known
point) are shown. Figure 7 explains each part of these output lines.

01-> Search 1 New Min f= 6.64e+01 x=[-1.00e+00 0.00e+00 ]
o ————— —X ~ < -~ _

a b c d e
step=1.00e+00 tag=001_006 conv=[ 0 0 0 0 ]

~~

~~ ~~

f g h

IS

The agent this output originated from.

The search direction that found a new minimum.

The type of event. New Min is the only event reported at the default
output level.

The function value at the new minimum.

The coordinates of the new minimum.

The step size used when the new minimum was found.

This point’s globally unique identifier (GUID).

The convergence table. Indicates whether each search direction had
(1) or had not (0) converged.

S

o

SR w0

Figure 7: Explanation of New Minimum output lines.

In addition to new minimums, APPS also reports the following other type
of messages about points it is evaluating (or trying to evaluate).

e F Cached — The function value has been retrieved from the cache.

e F No-Go — The function evaluation is not started because the trial point
is outside of the bounds and cannot be made feasible

e F NoSpawn — The function fails to properly spawn. This is rare.
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F Insuff — Insufficient decrease, i.e., even though the function value is
better than the best known, it is not enough of a decrease.

e Converge — The search in this direction is converged for this point.
e Contract — The step length is reduced.
e Merge Min — Two convergence tables are merged.

e Switch — Switching to a better point produced by another search direc-
tion.

e F Start — Starting a new function evaluation.

APPS also reports its progress with other messages as well. For example,
it will report Breaking Feval and indicate the PVM taskid of the function
evaluation. (This only occurs in the PVM version.)

Failures and additions of hosts/agents are also reported. For example, if an
agent fails and the failure is detected by the first agent:

00-> Deleting agent x

where x is the number of the agent that failed. APPS then prints lines 4-10 of
the initialization output again, updated to reflect the new state of the agents.

5.3 Shutdown Output

Once APPS converges, each agent prints its final minimum; see lines 33 and
38 in Figure 6. In general, the final minimums should agree, but there may
be occasions when an agent finds a better point between the another agent
determines the process has converged and the message saying so is received.
In this example, the convergence table contains all 1’s, indicating every search
direction has converged. This will not always be the case. If some subset of
the search directions all converge and that subset forms a positive basis, then
APPS could terminate before all the search directions converge [5].

A search profile is printed for each search direction; see lines 34-35 and
39-40. The times are wall-clock times, in seconds. Total time is the amount
of time the search direction ran. Idle time is the amount of time the search
direction spent not doing function evaluations. The second part of the search
profile deals with the number of function evaluations done in that direction.

e Fevals is the number of function evaluations this search direction per-
formed without a problem.

e Fail is the number of function evaluations that did not return a value.

e Break is the number of function evaluations started but terminated pre-
maturely because the search direction found out about a new best point.

e Flop is the number of function evaluations that were not executed because
either
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1. PVM failed to spawn them, or

2. the trial point was outside the bounds and its projection back inside
the bounds was the base point of the pattern.

e Cache is the number of times the search direction used a saved function
value from the cache instead of evaluating the objective function again.

e Total is the total number of function evaluations:
Total = Fevals + Fail + Break + Flop + Cache.

If the cache is being used, each agent also prints out a cache profile; see lines
36 and 41. All the numbers in this profile are times, in seconds, and include
time spent communicating between processors.

e Min is the smallest amount of time spent on any single cache lookup.
e Max is the largest amount of time spent on any single cache lookup.
e Mean is the average time spent per cache lookup.

The utility $APPSPACK/bin/parsestats can be used to evaluate the out-
put from APPSPACK; see Figure 8 for the statistics that would be generated
from the output in Figure 6. The function values are listed — this enables us
to quickly judge is all processors are in agreement. Additionally, cumulative
statistics are printed for the searches and the cache managers. For the searches,
the summary is the mazimum total time and the mean for all the other columns.
For the cache, it is interesting to note the Agent 1’s cache access was much faster
than Agent 0’s. This is likely due to the fact that the cache process resided on
the same host as Agent 1.

6 Using APPS with a User’s Function Evalua-
tion
This section describes the three example problems included with APPS. These

examples demonstrate how to plug a function evaluation into APPS in several
different ways.

6.1 Example 1

This example demonstrates how APPS may be used with an objective function
whose calling sequence has the format:

double feval(int ndim, double* x)

where ndim is the number of dimensions and x is the point to be evaluated (an
ndim-array of doubles). The return value is a double.

Our example uses a simple quadratic function. To compile Example 1,
change directories to $APPSPACK and type
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**xx FINAL F VALUES (2) ***

Agent  Final F(X)

0 : 1.00e+00
1 : 1.00e+00

Mean : 1.00e+00
Median : 1.00e+00
Min : 1.00e+00
Max 1.00e+00

*x*x SEARCH STATISTICS (4) #*x**

Agent/
Search Total Time Idle Time Fevals Fails Breaks Flops Cache Total

0/ 2: 8.04e-01 5.04e-01 14 0 1 0 7 22
0/0: 8.04e-01 4.70e-01 15 0 2 0 6 23
1/ 3: 7.99e-01 3.53e-01 32 0 7 0 0 39
1/1: 7.99e-01 3.72e-01 38 0 5 0 0 43
Mean 8.01e-01 4.25e-01 24.8 0.0 3.8 0.0 3.2 31.8
Median 8.02e-01 4.21e-01 23.5 0.0 3.5 0.0 3.0 31.0
Min 7.99e-01 3.53e-01 14 0 1 0 0 22
Max 8.04e-01 5.04e-01 38 0 7 0 7 43

**x*x CACHE STATISTICS (2) #**x

Agent Min Time Max Time Mean Time
0 : 5.10e-03 4.86e-02 1.67e-02

1 : 5.33e-04 8.43e-03 5.44e-03

2 2.85e-02 1.11e-02
Median : 2 2.85e-02 1.11e-02
Min : 5.33e-04 8.43e-03 5.44e-03
5 4.86e-02 1.67e-02

Mean

Max

Figure 8: Sample output from parsestats utility.

17



>> make examplel

To execute Example 1 for $NDIM dimensions, type

PVM apps._pvm generic exl $NDIM
MPI mpirun -np $N appsmpi_exl $NDIM
OTHER apps_other_exl $NDIM

In the MPI example, $N = 2 - $NDIM + 2.
To substitute your own function proceed as follows. First, copy some files.

>> cd $APPSPACK/ex1
>> cp Makefile $MYFUNCDIR/Makefile
>> cp exl.c $MYFUNCDIR/$MYFUNC.c (PVM only)

We assume there is a file called feval. c containing the user’s function definition.
Be sure the function evaluation call is of the form

double feval(int n, double *x)

Then, modify the Makefile by replacing ex1 everywhere with $MYFUNC.

PVM Compile $MYFUNC as follows:

>> cd $MYFUNCDIR
>> make

To run the PVM version of APPS, type
>> apps_pvm_generic $MYFUNC $NDIM
Note that APPSPACK itself does not need to be recompiled.
MPI To use MPI, be sure to run configure with the --enable-mpi option.
Compile feval.o by typing

>> cd $MYFUNCDIR
>> make feval.o

For the MPT version, we need to recompile APPS as follows:

>> cd $APPSPACK/apps
>> make X=$MYFUNC X0BJS=../$MYFUNCDIR/feval.o

The variable $X0BJS specifies files that APPS should link with; in this case, the
object file which contains the function evaluation.
To run the MPI version of APPS, type

>> mpirun -np $N apps.mpi $MYFUNC $NDIM

where $N = 2 - §NDIM + 2.
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Other We have also included a serial version for an example of how to run
APPS without PVM or MPI (be sure to run configure with the --disable-pvm
option). Instead of a serial version, however, the user may plug into third-party
software for executing function evaluations. Compile feval.o by typing

>> cd $MYFUNCDIR
>> make feval.o

For the serial version, we need to recompile APPS as follows:

>> cd $APPSPACK/apps
>> make X=$MYFUNC XMGRDIR=$MYFUNCDIR XOBJS=$MYFUNCDIR/feval.o

Here $XMGRDIR specifies the directory containing an alternate version of myfevalmgr.C
that should be used in place of the default in $APPSPACK/apps/src/myfevalmgr.C.
This file contains the MyFevalMgr object which is derived from FevalMgr. This
object controls the interface to the function evaluation. Details on creating an
alternate MyFevalMgr are given for Example 3 in §6.3. Adding XCOM=serial to
the make command line would replace other with serial in the name of the
executable.

To run the “other” version of APPS, type

>> apps_other_$MYFUNC $NDIM

6.2 Example 2

Example 2 illustrates how to use APPS when the function evaluation cannot
be called via a simple subroutine, but instead must execute independently. In
Example 2 we use a wrapper program to create a unique working directory,
generate an input file, execute the function evaluation via a C system call,
read and process the output file, and then delete the working directory and its
contents. To compile, change directories to $APPSPACK and type

>> make example2

Execute Example 2 as follows:

PVM apps._pvm generic --nobreak ex2 wrapper $NDIM
MPI mpirun -np $N appsmpi_ex2 $NDIM
OTHER apps_other_ex2 $NDIM

The --nobreak option is required in the PVM version in order to make sure all
the temporary files are deleted. In the MPI example, $N = 2 - $NDIM + 2.

To substitute a user’s function evaluation named $MYFUNC in the directory
$MYFUNCDIR, first copy the contents of the $APPSPACK/ex2 directory as follows:

>> cd $APPSPACK/ex2
>> cp Makefile $MYFUNCDIR/Makefile
>> cp ex2.h $MYFUNCDIR/$MYFUNC.h
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>> cp wrapper.C $MYFUNCDIR/wrapper.C

>> cp ex2_wrapper.C $MYFUNCDIR/$MYFUNC wrapper.C
>> cp myfevalmgr.C $MYFUNCDIR/myfevalmgr.C

>> cp myfevalwkr.C $MYFUNCDIR/myfevalwkr.C

Then follow these steps:

1. We assume that the program $MYFUNC is already compiled and expects an
input file of the form:

$NDIM
$x[1]

$X[$NDIM]

where $NDIM is the number of parameter and {$X[1], ..., $X[$NDIM]} is the
set of parameters to be evaluated. The output file should contain the
function value as its first entry. To change the format of the input file or
to read the output file differently, modify $MYFUNCDIR/wrapper.C.

2. Change $MYFUNCDIR/$MYFUNC.h to specify the names of the input and
output files for the program $MYFUNC.

3. Next, for PVM modify $MYFUNCDIR/$MYFUNC wrapper.C, replacing ex2
everywhere with $MYFUNC. For MPI, do the replacement in $MYFUNCDIR/myfevalwkr.C,
and for the serial version, do the replacement in $MYFUNCDIR/myfevalmgr.C.

4. Finally, modify the Makefile by replacing ex2 everywhere with $MYFUNC.
PVM We assume that $MYFUNC is already compiled. Compile the wrapper
program by typing

>> cd $MYFUNCDIR
>> make $MYFUNC_wrapper

Be sure to copy $MYFUNC to the directory containing PVM executable files (for
example, $HOME/pvm3/bin/$PVM_ARCH) on all hosts. Then, to run the PVM
version of APPS, type

>> apps_pvm_generic $MYFUNC_wrapper $NDIM
MPI We assume that $MYFUNC is already compiled. Compile wrapper.o by
typing

>> cd $MYFUNCDIR
>> make wrapper.o

For the MPT version, we need to recompile APPS as follows:
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>> cd $APPSPACK/apps
>> make X=$MYFUNC XWKRDIR=$MYFUNCDIR \
>> X0BJS=$MYFUNCDIR/wrapper.o

The variable $XWKRDIR specifies that an alternate version of myfevalwkr.C
should be used in place of $APPSPACK/apps/src/myfevalwkr.C. The MyFevalWkr
object is the function evaluator for the MPI version, and it is derived from the
default FevalWkr object. In this case, we want FevalWkr to do something dif-
ferent than the default version that is used in Example 1. In addition to the
constructor and destructor, we only need define one function in the derived
object: doFeval(). In addition, the following function must be defined in the
myfevalwkr.C file as shown:

FevalWkr* myfevalwkr() { return new MyFevalWkr; }

Notice also that a special class, AppsComm, is used as a wrapper to the stan-

dard MPI and PVM commands. See $APPSPACK/apps/src/appscomm.C and

$APPSPACK/apps/include/appscomm.H for the exact specification. Note that

by default, the compile flag ~-I$XWKRDIRis included in the compilation of myfevalwkr.C.
Be sure to copy $MYFUNC to $APPSPACK/bin on all hosts. Then, to run the

MPT version of APPS, type

>> mpirun -np $N apps.mpi $MYFUNC $NDIM
where $N = 2 - $NDIM + 2.
Other We assume that $MYFUNC is already compiled. Compile wrapper.o by
typing

>> cd $MYFUNCDIR
>> make wrapper.o

For the serial version, we need to recompile APPS as follows:

>> cd $APPSPACK/apps
>> make X=$MYFUNC XMGRDIR=$MYFUNCDIR \
>> X0BJS=$MYFUNCDIR/wrapper.o

Note that by default, the compile flag ~-T$XMGRDIR is included in the compilation
of myfevalmgr.C.

Be sure to copy $MYFUNC to $APPSPACK/bin on all hosts. Then, to run the
“other” version of APPS, type

>> apps_other $MYFUNC $NDIM

where $N = 2 - §NDIM + 2.
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6.3 Example 3

Example 3 is a special case where we must redefine MyFevalMgr, even for the
PVM version. There are several reasons why this problem is different than the
others:

1. We have (optional) bounds on the variables. The default MyFevallMgr
assumes all problems are unconstrained.

2. The user has the choice of siz different functions, all accessible via one
program.

3. The user may specify an optional parameter to slow down the function
evaluation—this is useful in simulating more expensive problems. We call
this parameter the stall factor, and it specifies the size of an arbitrary
non-negative least squares (NNLS) problem to be solved by the function
evaluation.

The manner in which these differences are accommodated is described below.
The new calling sequence is

apps_$XCOM_ex3 $PROBLEM_NAME $NDIM [$USE_BOUNDS] [$STALL]

Here, $PROBLEM_NAME is one of six function evaluation names (e.g., broyden2a),
$NDIM is the problem size, $USE_BOUNDS is 1 to use the bounds and 0 otherwise,
and $STALL is a positive integer representing the size of the NNLS problem
to be solved. Both $USE_BOUNDS and $STALL are optional, as indicated by the
brackets, with defaults of 0 and 1, respectively.

To compile Example 3, change directories to $APPSPACK and type

>> make example3

To use Example 3:

PVM apps_pvm_ex3 $PROBLEM_NAME $NDIM
MPI mpirun -np $N apps._mpi_ex3 $PROBLEM_NAME $NDIM
OTHER apps_other_ex3 $PROBLEM_NAME $NDIM

All three also take the following optional arguments: [$USE_BOUNDS] and [$STALL].
As stated above, an alternate to MyFevalMgr is provided in the file $APPSPACK/ex3/myfevalmgr.C.
The new object has three additional variables to specify the problem name
(probname), whether or not to use the bounds (usebounds), and the stall factor
(stall). The following functions are defined in the derived object MyFevallgr.

e MyFevalMgr (): The constructor initializes the additional variables to NULL
or equivalent defaults. The constructor is not passed any arguments. The
parameters used to set these objects are passed into setFevalMgr as de-
scribed below.

e “MyFevallMgr(): The destructor deletes any memory used by the addi-
tional variables.
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e showUsage(): The usage statement is modified to describe the parameters
that are expected by this particular function evaluation.

e setFevallMgr(): This function is passed a vector of strings named fargs
containing the parameters on the command line as well as a boolean in-
dicating whether or not APPS is in single-agent mode (issingle). This
is where all the parameters on the FevalMgr object are actually set. The
vectors initx, lower, and upper are set in the functions as well. By
default, they have length zero.

e leftshift(): Prints function evaluation parameters to the given stream.
This is modified since we have additional parameters for this function
evaluation.

e spawn(): This is the function which starts a function evaluation. In this
case, we need only modify it in PVM mode.

e pack() (PVM only): We need to pack any additional variables.
e unpack() (PVM only): We need to unpack any additional variables.

e initWorkers() (MPIonly): Initialize the function evaluation worker tasks.
The only thing that should need to be modified here is what data is sent
to initialize the tasks.

In addition to the new derived class, the following function must be defined
within myfevalmgr.C:

FevalMgr* myfevalmgr() { return new MyFevalMgr; }

In the MPI version, we similarly require a new version of the FevalWkr
object, in the file $APPSPACK/ex3/myfevalwkr.C. The new derived class has
two additional variables: probname and stall, as defined above. We redefine
the following functions:

e MyFevalWkr(): The constructor now must also initialize the additional
variables.

e “MyFevalWkr(): The destructor must also destroy any additional vari-
ables.

e initialize(): A different initialization packet is sent by the manager, so
the worker must receive different information.

e doFeval(): This is a pure virtual function and as such must always be
redefined.

o leftshift(): Prints out the worker’s parameters to the given stream.
To modify Example 3 to your own function evaluation named $MYFUNC in

the directory $MYFUNCDIR, proceed as follows:
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>> cd $APPSPACK/ex3

>> cp Makefile $MYFUNCDIR/Makefile

>> cp myfevalmgr.C $MYFUNCDIR/myfevalmgr.C
>> cp myfevalwkr.C $MYFUNCDIR/myfevalwkr.C

Then, place your function evaluation inside the file feval.C and modify myfevalmgr.C
and myfevalwkr.C accordingly, using the guidelines above. There are other vec-

tors in the FevalMgr object that the user may want to initialize in their version

of MyFevallMgr such as:

e islower: A boolean array indicating which lower bounds are active and
inactive.

e isupper: A boolean array indicating which upper bounds are active and
inactive.

e scale: A scaling vector; the default scaling is 1.0 (i.e., none).

Finally, modify the Makefile by replacing ex3 everywhere with $MYFUNC.

PVM Compile the PVM version as follows:

>> cd $MYFUNCDIR

>> make feval.o

>> cd $APPSPACK/apps

>> make X=$MYFUNC XMGRDIR=$MYFUNCDIR \
>> X0BJS=$MYFUNCDIR/feval.o

MPI The main difference between the MPI and PVM version is the inclusion
of the MyFevalWkr object, which PVM does not require. Compile the MPI
version as follows:

>> cd $MYFUNCDIR

>> make feval.o

>> cd $APPSPACK/apps

>> make X=$MYFUNC XMGRDIR=$MYFUNCDIR \

>> XWKRDIR=$MYFUNCDIR X0BJS=$MYFUNCDIR/feval.o

Other Compile the serial version as follows:

>> cd $MYFUNCDIR

>> make feval.o

>> cd $APPSPACK/apps

>> make X=$MYFUNC XMGRDIR=$MYFUNCDIR \
>> X0BJS=$MYFUNCDIR/feval.o
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7 Function Value Cache

APPS uses the function value cache to speed up convergence by avoiding eval-
uating the objective function at the same point more than once. Every time
APPS does a function evaluation, it saves the function value and point in the
cache. Before a function evaluation, APPS checks the cache to see if that evalu-
ation has already been done. If so, APPS uses the cached function value instead
of doing the function evaluation again.

Without the cache, the chance of repeating function evaluations at the same
point is high. On one four-dimensional test problem (chebyquad of Exam-
ple 3), an average of about 22% of function evaluations were at previously
visited points. Because APPS is visiting points that lie on a regular grid, there
is a good chance it will come back to a point several times.

For a simple example of how this can happen, consider the situation in
Figure 9. APPS evaluates the function at the point indicated by x and finds
the value there is greater than the best known value so far (a). APPS therefore
performs a contraction (b) and evaluates the function at the point indicated by
*. As it turns out, the function value at the point indicated by x is the lowest
function value seen so far, so APPS moves that search direction. Now APPS is
evaluating the function at the point indicated by x once again (c).

Although the cache is designed to save time when situations like that in
Figure 9 occur, there is a chance that using the cache will increase the time
it takes APPS to converge. If a function evaluation takes less time than a
cache lookup, then the extra work of doing a cache lookup before every function
evaluation is not worthwhile. However, the worst average time for a cache
lookup (including time for communication between processors) we have seen in
our tests is O(10~2) seconds.

The cache could also slow down convergence if APPS never or almost never
revisits a point. Then APPS will incur the cost of the cache lookup at each
function evaluation but never get any benefit. Again, though, this is not ex-
pected to be a major problem because of the short time required for a cache
lookup.

If the cache does cause problems, it can be disabled using APPS’s -—nocache
option (see Appendix A).

Table 5 in Appendix C gives some numerical results concerning the perfor-
mance of the cache.

7.1 Cache Data Structure

APPS’s function value cache stores points in a splay tree. A splay trees is a
binary search tree that uses a series of rotations to move any accessed node to
the root. Splay trees are described in [9].

We also considered using red-black trees, a type of balanced binary search
tree, as the underlying data structure for the cache. Red-black trees are de-
scribed in [1]. Unlike splay trees, which may in rare cases degenerate into linked
lists, red-black trees are always guaranteed to be “approximately” balanced
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(c)

Figure 9: A repeated function evaluation.

(specifically, no path from the root to a leaf will be more than twice as long as
any other). This in turn means that searching a red-black tree is an O(logn)
operation, whereas splay trees only guarantee searching in amortized O(logn)
time, and can be as bad as O(n). In addition, splay trees must do extra O(logn)
work every time a node is accessed to move it to the root of the tree.

Despite these shortcomings, splay trees have advantages over red-black trees
in this application. They are easier to implement and understand than red-black
trees. Also, because splay trees keep the most recently accessed nodes near the
root of the tree, searching can be quite fast if those nodes are also the ones
most likely to be searched for. This is the case for APPS, which rarely revisits
a point it evaluated long ago in the iteration history.

We compared the caching performance of APPS using splay trees and red-
black trees on several test problems; see Table 2. The objective function for
the four-, eight-, and sixteen-dimensional problems is chebyquad, one of the six
functions available in Example 3 (see §6.3). The seventeen-dimensional problem
(SPICE) involves fitting a computer simulation of voltages in a circuit to exper-
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imental data. It is described in [5]. The timings do not include communication
between processors.

The splay tree implementation required far fewer comparisons, on average,
for both insertion and search than the red-black tree implementation, but the
difference in time is negligible. However, insertion and search times for red-black
trees will grow as more points are inserted in the tree. For splay trees they will
stay about the same. The time difference could become significant if many more
function evaluations are stored in the cache.

Insert Search

Num Time Comps Num Time Comps

4-D Splay 275 | 0.7-1075 2.62 340 | 0.5-10"° 2.29
R-B 273 | 0.9.10°° 9.29 338 | 0.6-10"5 7.79

8D Splay | 1688 [ 0.9-10=° 3.20 2419 | 0.7-107° 3.07
R-B 1657 | 1.8-10~° 12.42 2386 | 1.0-1075 11.00

16-D | Splay | 6549 | 0.8-10~? 3.01 | 13074 | 0.8-10°° 2.26
R-B 5517 | 1.7-107° 14.96 | 10270 | 1.2-10° 13.26

17-D | Splay | 1400 | 4.5-10~° 5.98 1478 | 2.3-10°° 2.97
R-B 1246 | 5.1-10~2 10.96 1312 | 3.0-107° 9.62

Table 2: Comparison of caching using splay trees and red-black (R-B) trees. For
each problem type, the number of inserts and searches (Num) is given, along
with the average time for each insert or search (in seconds) and the average
number of comparisons (Comps) for each insert or search.

Since APPS is designed to run in heterogeneous environments, the test the
cache uses for equality of two points must take into account the possibility that
the points it is comparing are not represented with the same precision. We do
this by comparing points only to a user-specified degree of precision. For vectors
x and y of length n, we say © = y when (see Figure 10):

tol
|$i—yi|<%, fori=1,2,...,n.

where tol is APPS’s convergence tolerance (set with the ——tol parameter; the
default is 10~*). APPS’s step size will not shrink below tol, so using the standard
pattern of the plus and minus coordinate directions APPS cannot visit points
less than tol apart (although using other search patterns APPS could visit points
less than tol apart). If two points are less than tol apart, we can safely assume
they are the same point.

When the cache finds a match for a point APPS has queried it about, the
cache returns the point and the function value at that point. APPS not only
uses the cached function value, but also changes its point to the point returned
from the cache. This allows APPS’s agents to meaningfully compare points
when they are trying to decide if they have converged to the same point.

It is also necessary to impose some order on the points so the cache can place
them in the tree. The test used for ordering points, like the test for equality, is
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Figure 10: The cache considers b = a and ¢ < a.

based on a user-specified precision. We say z is less than y when there exists j
such that (see Figure 10):

tol
lz: —yil < %, fori =1,2,...,7—1 and

tol
R =
Yj j D)
The first inequality says that, by our definition, the first j — 1 coordinates of
x and y are equal. The second inequality says that the jth coordinate of x is
sufficiently less than the jth coordinate of y.

7.2 Cache Implementation

The APPS function value cache consists of two parts: the cache worker and
the cache manager; see Figure 11. There is one cache worker, which runs as a
separate process and contains all the cached data. Each agent contains a cache
manager. The cache manager handles all communication between that agent
and the cache worker. Cache managers communicate with the cache worker by
sending two types of messages. A lookup message causes the cache worker to
search the cache for a given point and return the function value at that point if
it is in the cache. An insert message causes the cache worker to insert a given
point in the cache.

In APPS-PVM, the cache worker is a separate executable. It is spawned at
startup by the master agent and terminated by a message sent by a cache man-
ager when it shuts down. The cache worker executable is named apps_cachewkr.

In APPS-MPI, the cache worker is part of the APPS executable. For n
search directions, APPS-MPI is started with n + 2 processes to use the cache.
As is the case without the cache, one of those processes becomes the agent
and n others become workers, performing function evaluations. The remaining
process becomes the cache worker. Since APPS-MPI only operates in single
agent mode, there is only one cache manager.
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Figure 11: Each agent’s cache manager (CM) handles communication with the
cache worker.

A Options

The following are a list of parameters for APPSPACK. The options may also
be listed by typing $APPS --help. Every option has a long form, and common
options have a short (one letter) abbreviation. Parameters which do not match
any of the options listed below are ignored. If parameters are repeated, the first
one will be used. Options for APPS may be specified on the command line, in
a file, or both.

On the command line, the long form is also preceded by a double dash and
followed by an equal sign with while the short form is preceded by a single
dash and followed immediately by the option value. There should be no spaces.
Boolean options can take the form --option=B00L, where BOOL is true or false.
Alternatively, one can simply use ——option for -—option=true or --nooption
for -—option=false.

If some of the options are specified in a file, then the -i option must be spec-
ified to indicate the filename. The options in the file must be in the long format
without the double-dash preceding the name (e.g., tol = 1.0e-2). Boolean
options must be of the form OPTION = BOOL (e.g., break = true). There
must be spaces before and after the equal sign.

e -i, —--input=FILENAME

The name of the APPSPACK options filename. It must be accessible on
the host on which APPSPACK is started. If the filename is ””, then no
input file is read. Default: *”
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-0, ——output=FILENAME

Record the output from each agent in the file named FILENAME. XXX
where the XXX is the agent id (between 0 and n—1 where N is the number
of agents.) The file is created in the working directory as specified by PVM
(usually $HOME or /tmp). The exception is that if the program is launched
from the command line, agent zero will write its file in the directory in
which it was launched. If the filename is ””, then all output is directed to
standard output of the first process or the PVM console. Default: «”

--single[=BO0L], --nosingle

Use ‘single agent’ mode. This is the default if PVM is not used. When
APPS-PVM is run in single-agent mode, all parallelism is handled by the
FevalMgr object — including starting and stopping PVM. For APPS-
PVM, this mode may be faster than the default multi-agent mode, but it
is much less fault tolerant. Default: false (PVM) / true (MPI & other)
--cache[=B00L], --nocache

If true, use the function value cache. If false, do not use the cache. In
APPS-MPI, using the cache requires an additional process. Since the
cache currently requires either MPI or PVM, the --nocache option should
be used with a custom communication interface. See §7 for more details
about the cache. Default: true

-t, ——tol=REAL

Specify the convergence tolerance. Default: 1.0e-4

--alpha=NUM

Specify the sufficient decrease parameter. Default: 0

-p, ——pattern=NUM

Specify the pattern type where NUM is 0,1,2,3 corresponding to the fol-
lowing patterns:

0: Plus/Minus Unit Directions (default)
1: Regular Simplex

2: Plus Unit Directions and -1 Vector
3: Plus/Minus Shifted Regular Simplex

If the ‘pattern size’ is bigger than the minimum required, additional search
directions are generated by randomly combining the ‘base’ directions. For
example, a ‘random direction’ with pattern type 0 might be [-101]7. Only
pattern type 0 is valid if bound constraints are used. Default: 0

-s, —-search=NUM

Specify the total number of search directions. Default: minimum size
needed for pattern type
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e -a, —-—active=NUM
Specify the minimum number of search directions that must be actively
searched. Default: minimum size needed for pattern type

e —-break[=B0O0L], --nobreak
Specifies whether or not function evaluations can be terminated before
they are complete in the event that a better point comes along. Default:
true (PVM) / false (MPI & other)

e —-reassign[=BO0L], --noreassign
Allow active searches to be reassigned when a new host is added. Default:
true

e -d, --debug=NUM

Determines how much information is printed where NUM is one of:

Output final answer

And new minimums and no spawn

And status information on agents, cache, etc. (Default)
And function return information

And cache, no go, and insufficient decrease notices
And convergence messages

And contract, merge, and switch messages

And function evaluation start and break messages

And detailed job map calculations

And positive basis convergence calculations
And #2 for all agents

[y
<

e —-profile=NUM
Where NUM is 0 (on) or 1 (off). For each individual search direction, pro-
filing will print out the wall clock time, the wall clock idle time, the total
number of function evaluations, the number of successful and failed func-
tion evaluations, and the number of aborted function evaluations. Default:
1.

e --precision=NUM

Specify the output precision for real numbers. Default: 2.

e —-inc[=B0O0L], --noinc

Specifies whether or not the step length can increase after multiple suc-
cessful steps in the same direction. Default: true.
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e —-—contract=REAL

Specify the amount by which the step length is contracted during a con-
traction. Must be between 0 and 1. Default: 0.5.

e --step=REAL
Specify the initial step length. Default: 1.0.
e —-min=REAL

Specify the minimum step length after a successful iteration. Default:
twice the convergence tolerance.

e —-max=REAL
Specify the maximum allowable step length. Default: 1.0e+5.

e ——intw=NUM
Specify output width for integer search ids. Default: 2.

e —-hexw=NUM

Specify the output width for hex values used in host and taskids. Default:
8.

e —-nnls=REAL
Specify the tolerance for NNLS positive basis test. Default: 1.0e-8.

e --eps=REAL

Specify the maximum of the machine epsilons for all machines participat-
ing in the computation. Default: 1.0e-8.

B Running APPS from the PVM Console

Type pvm to launch the PVM console. At the prompt type:
pvm> setopt PvmShowTids O

to turn off display of the TID number with output. Then, to run APPS, type
pvm> spawn -> apps_pvm_generic [$0PTIONS] $PARAMS

To spawn APPS on a particular host, type
pvm> spawn -HOST -> apps_pvm_generic [$0PTIONS] $PARAMS

Type help in the PVM console for more options.

Warning: The PVM console occasionally core dumps when there is lots and
lots of output. If this happens to you, try running from the command line
instead.
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C APPS Timings

In this section we present some numerical results on the performance of APPS.
The test problems used are the six four-dimensional test problems from Exam-
ple 3; see §6.3. The test problems were run on a cluster of quad 200 MHz Intel
Pentium Pro processors, using a convergence tolerance of 1072 and a stall factor
of 200.

Because APPS is an asynchronous algorithm, the path to the solution may
be different every time, even if the starting conditions are the same. There-
fore we ran each problem 25 times and averaged the results. The same tests
were performed with APPS-PVM in multi-agent mode, APPS-PVM in single-
agent mode, and APPS-MPI. For the MPI tests, MPI/Pro (see Appendix D), a
commercially available version of MPI, was used.

To demonstrate the difference between APPS’s performance with and with-
out the cache, we ran these tests both without the cache (Table 3) and with the
cache (Table 4) In Tables 3 and 4, “Procs” refers to the number of processors
(the same as the number of search directions) the problem was run on. “Total
Time” refers to the longest time, in seconds, required for any search direction
to finish. “Function Evaluations” is the average number of function evaluations,
not counting cached function values, performed per search direction.

Table 5 gives information about the number of times a cached function value
was used and the amount of time required for a cache lookup, successful or
not. “% Reuses” is the reduction, as a percentage, in the number of function
evaluations APPS had to perform. “Avg Lookup Time” is the average time
required by the cache, including communication between hosts, to perform a
lookup in the cache.

Because of the way the runs were timed, timings for MPI do not include the
time needed to start all the processes before the program begins running (usually
about, one second). Timings for PVM do reflect the time needed to spawn all
processes, since the spawning takes place after APPS-PVM has started.

D Obtaining MPI

There are several free implementations of MPI available for download. We
have used two of these, LAM (Local Area Multicomputer), and MPICH (MPI
Chameleon).

LAM can be downloaded from:
http://www.mpi.nd.edu/lam/

MPICH can be downloaded from:
http://www-unix.mcs.anl.gov/mpi/mpich /index.html

There are also commercial implementations of MPI. The one we have used
is MPI/Pro. More information about MPI/Pro can be found at:
http://www.mpi-softtech.com/
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Problem Procs Total Time Function Evals

Name PVM PVM MPI/ PVM PVM-S | MPI/
Single Pro Single Pro

broyden2a 8 56.00 44.14 51.85 45.30 40.46 40.14
16 39.75 35.84 38.98 35.14 31.35 32.18

24 46.34 34.99 33.64 41.96 30.98 27.68

broyden2b 8 55.69 44.59 52.02 45.21 41.29 39.24
16 39.65 34.28 38.79 35.86 31.35 31.66

24 45.41 33.61 34.14 41.01 30.05 27.85

chebyquad 8 59.73 54.91 59.80 55.05 51.14 47.66
16 51.18 38.20 49.38 47.16 35.27 40.70

24 41.52 36.42 40.71 37.78 32.74 33.67

epowell 8 287.10 254.08 281.08 255.79 247.95 225.30

16 172.08 164.94 160.32 164.76 154.86 132.27
24 187.42 138.84 76.95 179.46 127.13 64.20

toint_trig 8 57.91 49.70 55.96 50.01 46.72 44.52
16 47.46 41.65 48.10 43.69 38.40 39.58
24 46.23 41.70 41.72 42.17 37.68 34.55
vardim 8 174.12 140.17 150.99 145.35 131.17 121.15
16 37.16 35.12 89.25 34.19 32.16 73.11
24 48.19 28.46 32.48 44.19 25.46 26.70

Table 3: Results on a collection of four-dimensional test problems, without the
function value cache.

Problem Procs Total Time Function Evals
Name PVM PVM MPI/ PVM PVM MPI/
Single Pro Single Pro
broyden2a 8 41.45 38.14 48.19 43.21 39.79 34.28
16 35.80 34.38 40.06 35.87 33.14 29.37
24 40.06 32.08 33.30 40.02 30.08 24.99
broyden2b 8 39.84 37.66 47.41 41.42 38.92 33.83
16 34.30 33.54 39.39 34.78 32.59 28.72
24 40.40 31.70 32.59 40.45 29.94 24.51
chebyquad 8 52.01 48.48 57.01 56.28 51.81 39.43
16 49.10 42.70 45.44 51.77 43.31 32.94
24 43.38 38.68 40.56 45.53 38.59 30.55
epowell 8 289.52 251.71 359.96 315.08 273.05 257.26
16 241.64 218.17 218.24 253.14 216.75 162.99
24 183.45 211.16 72.03 193.96 205.27 54.01
toint_trig 8 47.46 45.56 53.59 50.50 48.49 38.67
16 43.84 41.10 48.74 44.95 40.67 35.79
24 40.86 40.46 41.26 42.18 39.28 30.65
vardim 8 153.56 139.23 128.33 169.98 152.50 92.22
16 52.90 49.46 81.92 55.25 50.16 60.27
24 56.84 36.84 36.30 59.72 35.54 26.73

Table 4: Results on a collection of four-dimensional test problems with the
function value cache.
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Problem | Procs % Reuses Avg Lookup Time
Name PVM | PVM | MPI/ PVM PVM MPI/
Single Pro Single Pro
broyden2a 8 14.9 14.4 17.0 24-1072 [ 26-107% | 41-1072
16 12.1 11.6 12.4 41-1072 | 3.1-1072 | 3.0-10"2
24 11.3 12.3 11.5 4.9-102 | 2.6-10"2 | 2.3-10~2
broyden2b 8 14.6 14.2 15.7 2.6-1072 [ 2.8-107% | 4.4-1072
16 12.9 11.4 12.8 4.1-10"2 | 3.2-10"2 | 3.0-10~2
24 11.3 12.0 11.6 4.9-1072 | 2.7-1072 | 2.3.10"2
chebyquad 8 18.4 16.7 20.3 25-1072 [ 2.8-1072 | 4.2-10"2
16 15.4 14.7 15.6 42-1072 | 3.2-1072 | 3.0-10"2
24 15.4 15.3 15.0 4.4-102 | 2.5-1072 | 2.2.1072
epowell 8 16.1 15.5 16.0 25.1072 [ 2.8-107%2 | 43-1072
16 12.5 11.9 14.5 45-1072 | 3.3-1072 | 3.0-10"2
24 13.3 12.9 13.1 571072 | 2.7-1072 | 2.4-10"2
toint_trig 8 15.2 15.9 15.9 2.7-1072 | 2.7-107% | 43-1072
16 12.5 12.1 14.1 4.3-102 | 3.2-10"2 | 2.9.10~2
24 13.6 13.6 13.9 44-1072 | 2.6-1072 | 2.3-10"2
vardim 8 17.2 16.3 17.8 2.7-1072 [ 2.8-1072 | 4.3-10~2
16 13.4 14.5 15.6 43-1072 | 3.3-1072 | 3.0-10"2
24 14.7 13.0 12.1 45-1072 | 2.5-10"2 | 2.4.10~2

Table 5: Performance of the function value cache on a collection of four-
dimensional test problems.
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